Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Exp Pharmacol ; 15: 13-26, 2023.
Article in English | MEDLINE | ID: covidwho-2197672

ABSTRACT

Background: The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems. Aim of Study: In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo. Materials and Methods: The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A. Results: All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE2 and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals. Conclusion: Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.

2.
Foods ; 11(19)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2065793

ABSTRACT

Obesity is a critical factor for chronic metabolic syndromes. The culinary plant fingerroot (Boesenbergia rotunda) has been reported for its anti-obesity activity. The anti-adipogenic effects of pandurantin A, a main component of fingerroot cultivated in Indonesia, have been studied. Nevertheless, the suppressive effect and related mechanisms of pinostrobin, a major constituent of Thai fingerroot, on adipogenesis have never been thoroughly investigated. This study aimed to evaluate the potential of pinostrobin to inhibit adipocyte differentiation. Culturing pre-adipocytes from both mouse (3T3-L1) and human (PCS-210-010) with pinostrobin at non-toxic concentrations (5-20 µM) for 48 h obviously hindered their differentiation into mature adipocyte as evidenced by reduced cellular lipid droplets. The lower levels of lipid metabolism-mediating proteins, namely C/EBPα, PPARγ, and SREBP-1c, as well as cellular triglyceride content were demonstrated in pinostrobin-treated 3T3-L1 cells when compared to the untreated control group. Additionally, pinostrobin modulated the signals of MAPK (p38 and JNK) and Akt (Akt/GSK3ß, Akt/AMPKα-ACC). These findings suggest the benefit of fingerroot as a source of phytopharmaceuticals for obesity prevention and management, with pinostrobin as the active principle.

3.
J Biomol Struct Dyn ; : 1-11, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-1984726

ABSTRACT

Panduratin A (Pa-A) is a prenylated cyclohexenyl chalcone isolated from the rhizomes of the medicinal and culinary plant Boesenbergia rotunda (L.) Mansf., commonly called fingerroots. Both an ethanolic plant extract and Pa-A have shown a marked antiviral activity against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the COVID-19 pandemic disease. Pa-A functions as a protease inhibitor inhibiting infection of human cells by the virus. We have modeled the interaction of Pa-A, and 26 panduratin analogues with the main protease (Mpro) of SARS-CoV-2 using molecular docking. The natural product 4-hydroxypanduratin showed a higher Mpro binding capacity than Pa-A and isopanduratin A. The interaction with MPro of all known panduratin derivatives (Pa-A to Pa-Y) have been compared, together with more than 60 reference products. Three compounds emerged as potential robust MPro binders: Pa-R, Pa-V, Pa-S, with a binding capacity significantly higher than 4-OH-Pa-A and Pa-A. The empirical energy of interaction (ΔE) calculated with the best compound in the panduratin series, Pa-R bound to Mpro, surpassed that measured with the top reference protease inhibitors such a ruprintrivir, lufotrelvir, and glecaprevir. Structure-binding relationships are discussed. Compounds with a flavanone moiety (PA-R/S) are the best binders, better than those with a chromene unit (Pa-F/G). The extended molecules (such as Pa-V) exhibit good Mpro binding, but the dimeric compound Pa-Y is too long and protrudes outside the binding cavity. The work provides novel ideas to guide the design of new molecules interacting with Mpro.Communicated by Ramaswamy H. Sarma.


Panduratin A is the main bioactive molecule in extracts of the medicinal plant Boesenbergia rotunda.Extracts of B. rotunda and Pa-A have shown activity against the virus SARS-CoV-2.We modeled the interaction of 27 panduratin derivatives with the main protease (Mpro) of the virus.Three molecules (Pa-R/V/S) revealed high Mpro binding capacity compared to reference compounds.Structure­binding relationships are discussed, to guide the design of compounds to treat COVID-19.

4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1934132

ABSTRACT

Boesenbergia rotunda (Zingiberaceae), is a high-value culinary and ethno-medicinal plant of Southeast Asia. The rhizomes of this herb have a high flavanone and chalcone content. Here we report the genome analysis of B. rotunda together with a complete genome sequence as a hybrid assembly. B. rotunda has an estimated genome size of 2.4 Gb which is assembled as 27,491 contigs with an N50 size of 12.386 Mb. The highly heterozygous genome encodes 71,072 protein-coding genes and has a 72% repeat content, with class I TEs occupying ~67% of the assembled genome. Fluorescence in situ hybridization of the 18 chromosome pairs at the metaphase showed six sites of 45S rDNA and two sites of 5S rDNA. An SSR analysis identified 238,441 gSSRs and 4604 EST-SSRs with 49 SSR markers common among related species. Genome-wide methylation percentages ranged from 73% CpG, 36% CHG and 34% CHH in the leaf to 53% CpG, 18% CHG and 25% CHH in the embryogenic callus. Panduratin A biosynthetic unigenes were most highly expressed in the watery callus. B rotunda has a relatively large genome with a high heterozygosity and TE content. This assembly and data (PRJNA71294) comprise a source for further research on the functional genomics of B. rotunda, the evolution of the ginger plant family and the potential genetic selection or improvement of gingers.


Subject(s)
Ginger , Zingiberaceae , Biosynthetic Pathways , DNA, Ribosomal , Flavonoids , Ginger/genetics , In Situ Hybridization, Fluorescence , Microsatellite Repeats/genetics , Zingiberaceae/genetics
5.
Saudi J Biol Sci ; 29(1): 65-74, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1537079

ABSTRACT

Boesenbergia rotunda (L.) Mansf., commonly known as fingerroot is a perennial herb in the Zingiberaceae family with anticancer, anti-leptospiral, anti-inflammatory, antioxidant, antiulcer, and anti-herpes viral activities. While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitory activity of B. rotunda extract has been recently found, the active compounds contributing to this activity are yet unknown. The main protease (Mpro) enzyme is one of the most well established therapeutic targets among coronaviruses which plays a vital role in the maturation and cleavage of polyproteins during viral replication. The current work aims to identify active phytochemical substances from B. rotunda extract that can inhibit the replication of SARS-CoV-2 by using a combined molecular docking and dynamic simulation approaches. The virtual screening experiment revealed that fifteen molecules out of twenty-three major active compounds in the plant extract have acceptable drug-like characteristics. Alpinetin, Pinocembrin, and Pinostrobin have binding energies of -7.51 kcal/mol, -7.21 kcal/mol, and -7.18 kcal/mol, respectively, and can suppress Mpro activity. The stability of the simulated complexes of the lead compounds with the drug-receptor is demonstrated by 100-ns MD simulations. The binding free energies study utilizing molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) show that the compounds and Mpro enzyme have favourable thermodynamic interactions, which are majorly driven by van der Waals forces. Thus, the selected bioactive phytochemicals from B. rotunda might be used as anti-SARS-CoV-2 candidates that target the Mpro enzyme.

SELECTION OF CITATIONS
SEARCH DETAIL